Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
1.
researchsquare; 2022.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1209107.v1

RESUMO

The continued emergence of SARS-CoV-2 variants is one of several factors that may cause false negative viral PCR test results. Such tests are also susceptible to false positive results due to trace contamination from high viral titer samples. Host immune response markers provide an orthogonal indication of infection that can mitigate these concerns when combined with direct viral detection. Here, we leverage nasopharyngeal swab RNA-seq data from patients with COVID-19, other viral acute respiratory illnesses and non-viral conditions (n=318) to develop support vector machine classifiers that rely on a parsimonious 2-gene host signature to predict COVID-19. Optimal classifiers achieve an area under the receiver operating characteristic curve (AUC) greater than 0.9 when evaluated on an independent RNA-seq cohort (n=553). We show that a classifier relying on a single interferon-stimulated gene, such as IFI6 or IFI44, measured in RT-qPCR assays (n=144) achieves AUC values as high as 0.88. Addition of a second gene, such as GBP5, significantly improves the specificity compared to other respiratory viruses. The performance of a clinically practical 2-gene RT-qPCR classifier is robust across common SARS-CoV-2 variants, including Omicron, and is unaffected by cross-contamination, demonstrating its utility for improving accuracy of COVID-19 diagnostics.


Assuntos
COVID-19
2.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.01.06.21268498

RESUMO

The continued emergence of SARS-CoV-2 variants is one of several factors that may cause false negative viral PCR test results. Such tests are also susceptible to false positive results due to trace contamination from high viral titer samples. Host immune response markers provide an orthogonal indication of infection that can mitigate these concerns when combined with direct viral detection. Here, we leverage nasopharyngeal swab RNA-seq data from patients with COVID-19, other viral acute respiratory illnesses and non-viral conditions (n=318) to develop support vector machine classifiers that rely on a parsimonious 2-gene host signature to predict COVID-19. Optimal classifiers achieve an area under the receiver operating characteristic curve (AUC) greater than 0.9 when evaluated on an independent RNA-seq cohort (n=553). We show that a classifier relying on a single interferon-stimulated gene, such as IFI6 or IFI44, measured in RT-qPCR assays (n=144) achieves AUC values as high as 0.88. Addition of a second gene, such as GBP5, significantly improves the specificity compared to other respiratory viruses. The performance of a clinically practical 2-gene RT-qPCR classifier is robust across common SARS-CoV-2 variants, including Omicron, and is unaffected by cross-contamination, demonstrating its utility for improving accuracy of COVID-19 diagnostics.


Assuntos
COVID-19
3.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.07.15.21260285

RESUMO

Unlike other respiratory viruses, SARS-CoV-2 disproportionately causes severe disease in older adults and only rarely in children. To investigate whether differences in the upper airway immune response could contribute to this disparity, we compared nasopharyngeal gene expression in 83 children (<19-years-old; 38 with SARS-CoV-2, 11 with other respiratory viruses, 34 with no virus) and 154 adults (>40-years-old; 45 with SARS-CoV-2, 28 with other respiratory viruses, 81 with no virus). Expression of interferon-stimulated genes (ISGs) was robustly activated in both children and adults with SARS-CoV-2 compared to the respective non-viral groups, with only relatively subtle distinctions. Children, however, demonstrated markedly greater upregulation of pathways related to B cell and T cell activation and proinflammatory cytokine signaling, including TNF, IFN{gamma}, IL-2 and IL-4 production. Cell type deconvolution confirmed greater recruitment of B cells, and to a lesser degree macrophages, to the upper airway of children. Only children exhibited a decrease in proportions of ciliated cells, the primary target for SARS-CoV-2, upon infection with the virus. These findings demonstrate that children elicit a more robust innate and adaptive immune response to SARS-CoV-2 infection in the upper airway that likely contributes to their protection from severe disease in the lower airway.


Assuntos
COVID-19
4.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-380803.v1

RESUMO

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing (scRNA-seq) we assessed lower respiratory tract immune responses and microbiome dynamics in 28 COVID-19 patients, 15 of whom developed VAP, and eight critically ill uninfected controls. Two days before VAP onset we observed a transcriptional signature of bacterial infection. Two weeks prior to VAP onset, following intubation, we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.


Assuntos
COVID-19
5.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.03.23.21253487

RESUMO

Secondary bacterial infections, including ventilator associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections. Critically ill patients with coronavirus disease 2019 (COVID-19) face an elevated risk of VAP, although susceptibility varies widely. Because mechanisms underlying VAP predisposition remained unknown, we assessed lower respiratory tract host immune responses and microbiome dynamics in 36 patients, including 28 COVID-19 patients, 15 of whom developed VAP, and eight critically ill controls. We employed a combination of tracheal aspirate bulk and single cell RNA sequencing (scRNA-seq). Two days before VAP onset, a lower respiratory transcriptional signature of bacterial infection was observed, characterized by increased expression of neutrophil degranulation, toll-like receptor and cytokine signaling pathways. When assessed at an earlier time point following endotracheal intubation, more than two weeks prior to VAP onset, we observed a striking early impairment in antibacterial innate and adaptive immune signaling that markedly differed from COVID-19 patients who did not develop VAP. scRNA-seq further demonstrated suppressed immune signaling across monocytes/macrophages, neutrophils and T cells. While viral load did not differ at an early post-intubation timepoint, impaired SARS-CoV-2 clearance and persistent interferon signaling characterized the patients who later developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients who developed VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. Together, these findings demonstrate that COVID-19 patients who develop VAP have impaired antibacterial immune defense weeks before secondary infection onset.


Assuntos
Pneumonia , Estado Terminal , Infecções Bacterianas , Síndrome Respiratória Aguda Grave , Pneumonia Associada à Ventilação Mecânica , Infecções Respiratórias , COVID-19
6.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.03.01.21252705

RESUMO

BackgroundSequencing of the SARS-CoV-2 viral genome from patient samples is an important epidemiological tool for monitoring and responding to the pandemic, including the emergence of new mutations in specific communities. MethodsSARS-CoV-2 genomic sequences were generated from positive samples collected, along with epidemiological metadata, at a walk-up, rapid testing site in the Mission District of San Francisco, California during November 22-December 2, 2020 and January 10-29, 2021. Secondary household attack rates and mean sample viral load were estimated and compared across observed variants. ResultsA total of 12,124 tests were performed yielding 1,099 positives. From these, 811 high quality genomes were generated. Certain viral lineages bearing spike mutations, defined in part by L452R, S13I, and W152C, comprised 54.9% of the total sequences from January, compared to 15.7% in November. Household contacts exposed to "West Coast" variants were at higher risk of infection compared to household contacts exposed to lineages lacking these variants (0.357 vs 0.294, RR=1.29; 95% CI:1.01-1.64). The reproductive number was estimated to be modestly higher than other lineages spreading in California during the second half of 2020. Viral loads were similar among persons infected with West Coast versus non-West Coast strains, as was the proportion of individuals with symptoms (60.9% vs 64.1%). ConclusionsThe increase in prevalence, relative household attack rates, and reproductive number are consistent with a modest transmissibility increase of the West Coast variants; however, additional laboratory and epidemiological studies are required to better understand differences between these variants. SummaryWe observed a growing prevalence and elevated attack rate for "West Coast" SARS-CoV-2 variants in a community testing setting in San Francisco during January 2021, suggesting its modestly higher transmissibility.

7.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.09.28.20201947

RESUMO

The December 2019 outbreak of a novel respiratory virus, SARS-CoV-2, has become an ongoing global pandemic due in part to the challenge of identifying symptomatic, asymptomatic and pre- symptomatic carriers of the virus. CRISPR-based diagnostics that utilize RNA and DNA-targeting enzymes can augment gold-standard PCR-based testing if they can be made rapid, portable and accurate. Here we report the development of an amplification-free CRISPR-Cas13a-based mobile phone assay for direct detection of SARS-CoV-2 from nasal swab RNA extracts. The assay achieved ~100 copies/L sensitivity in under 30 minutes and accurately detected a set of positive clinical samples in under 5 minutes. We combined crRNAs targeting SARS-CoV-2 RNA to improve sensitivity and specificity, and we directly quantified viral load using enzyme kinetics. Combined with mobile phone-based quantification, this assay can provide rapid, low-cost, point-of-care screening to aid in the control of SARS-CoV-2.

8.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.265074

RESUMO

We identify a mutation in the N gene of SARS-CoV-2 that adversely affects annealing of a commonly used RT-PCR primer; epidemiologic evidence suggests the virus retains pathogenicity and competence for spread. This reinforces the importance of using multiple targets, preferably in at least 2 genes, for robust SARS-CoV-2 detection. Article Summary LineA SARS-CoV-2 variant that occurs worldwide and has spread in California significantly affects diagnostic sensitivity of an N gene assay, highlighting the need to employ multiple viral targets for detection.

9.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.267500

RESUMO

Early in the current pandemic, the D614G mutation arose in the Spike protein of SARS-CoV-2 and quickly became the dominant variant globally. Mounting evidence suggests D614G enhances viral entry. Here we use a direct competition assay with single-cycle viruses to show that D614G outcompetes the wildtype. We developed a cell line with inducible ACE2 expression to confirm that D614G more efficiently enters cells with ACE2 levels spanning the different primary cells targeted by SARS-CoV-2. Using a new assay for crosslinking and directly extracting Spike trimers from the pseudovirus surface, we found an increase in trimerization efficiency and viral incorporation of D614G protomers. Our findings suggest that D614G increases infection of cells expressing a wide range of ACE2, and informs the mechanism underlying enhanced entry. The tools developed here can be broadly applied to study other Spike variants and SARS-CoV-2 entry, to inform functional studies of viral evolution and vaccine development.

10.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.267724

RESUMO

There is growing evidence pointing to the protective role of T cells against COVID-19. Vaccines eliciting targeted T cell responses have the potential to provide robust, long-lasting immunity. However, their design requires knowledge of the SARS-CoV-2-specific epitopes that can elicit a T cell response and confer protection across a wide population. Here, we provide a unified description of emerging data of SARS-CoV-2 T cell epitopes compiled from results of 8 independent studies of convalescent COVID-19 patients. We describe features of these epitopes relevant for vaccine design, while indicating knowledge gaps that can, in part, be augmented using prior immunological data from SARS-CoV. The landscape of SARS-CoV-2 T cell epitopes that we describe can help guide SARS-CoV-2 vaccine development as well as future immunological studies. A web-based platform has also been developed to complement these efforts.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
11.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.267997

RESUMO

The heavy burden imposed by the COVID-19 pandemic on our society triggered the race towards the development of therapies or preventive strategies. Among these, antibodies and vaccines are particularly attractive because of their high specificity, low probability of drug-drug interaction, and potentially long-standing protective effects. While the threat at hand justifies the pace of research, the implementation of therapeutic strategies cannot be exempted from safety considerations. There are several potential adverse events reported after the vaccination or antibody therapy, but two are of utmost importance: antibody-dependent enhancement (ADE) and cytokine storm syndrome (CSS). On the other hand, the depletion or exhaustion of T-cells has been reported to be associated with worse prognosis in COVID-19 patients. This observation suggests a potential role of vaccines eliciting cellular immunity, which might simultaneously limit the risk of ADE and CSS. Such risk was proposed to be associated with FcR-induced activation of proinflammatory macrophages (M1) by Fu et al. 2020 and Iwasaki et al. 2020. All aspects of the newly developed vaccine (including the route of administration, delivery system, and adjuvant selection) may affect its effectiveness and safety. In this work we use a novel in silico approach (based on AI and bioinformatics methods) developed to support the design of epitope-based vaccines. We evaluated the capabilities of our method for predicting the immunogenicity of epitopes. Next, the results of our approach were compared with other vaccine-design strategies reported in the literature. The risk of immuno-toxicity was also assessed. The analysis of epitope conservation among other Coronaviridae was carried out in order to facilitate the selection of peptides shared across different SARS-CoV-2 strains and which might be conserved in emerging zootic coronavirus strains. Finally, the potential applicability of the selected epitopes for the development of a vaccine eliciting cellular immunity for COVID-19 was discussed, highlighting the benefits and challenges of such an approach.


Assuntos
COVID-19 , Síndrome da Imunodeficiência Adquirida
12.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.07.27.20163147

RESUMO

During COVID19 and other viral pandemics, rapid generation of host and pathogen genomic data is critical to tracking infection and informing therapies. There is an urgent need for efficient approaches to this data generation at scale. We have developed a scalable, high throughput approach to generate high fidelity low pass whole genome and HLA sequencing, viral genomes, and representation of human transcriptome from single nasopharyngeal swabs of COVID19 patients.


Assuntos
COVID-19
13.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.06.15.20132233

RESUMO

ABSTRACT Background: We characterized SARS-CoV-2 infections in a densely-populated, majority Latinx San Francisco community six-weeks into the city's shelter-in-place order. Methods: We offered SARS-CoV-2 reverse transcription-PCR and antibody (Abbott ARCHITECT IgG) testing, regardless of symptoms, to all residents (>=4 years) and workers in a San Francisco census tract (population: 5,174) at outdoor, community-mobilized events over four days. We estimated SARS-CoV-2 point prevalence (PCR-positive) and cumulative incidence (antibody or PCR-positive) in the census tract and evaluated risk factors for recent (PCR-positive/antibody-negative) versus prior infection (antibody-positive/PCR-negative). SARS-CoV-2 genome recovery and phylogenetics were used to measure viral strain diversity, establish viral lineages present, and estimate number of introductions. Results: We tested 3,953 persons: 40% Latinx; 41% White; 9% Asian/Pacific Islander; and 2% Black. Overall, 2.1% (83/3,871) tested PCR-positive: 95% were Latinx and 52% asymptomatic when tested. 1.7% of residents and 6.0% of workers (non-census tract residents) were PCR-positive. Among 2,598 census tract residents, estimated point prevalence of PCR-positives was 2.3% (95%CI: 1.2-3.8%): 3.9% (95%CI: 2.0-6.4%) among Latinx vs. 0.2% (95%CI: 0.0-0.4%) among non-Latinx persons. Estimated cumulative incidence among residents was 6.1% (95%CI: 4.0-8.6%). Prior infections were 67% Latinx, 16% White, and 17% other ethnicities. Among recent infections, 96% were Latinx. Risk factors for recent infection were Latinx ethnicity, inability to shelter-in-place and maintain income, frontline service work, unemployment, and household income


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
14.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.05.18.20105171

RESUMO

We studied the host transcriptional response to SARS-CoV-2 by performing metagenomic sequencing of upper airway samples in 238 patients with COVID-19, other viral or non-viral acute respiratory illnesses (ARIs). Compared to other viral ARIs, COVID-19 was characterized by a diminished innate immune response, with reduced expression of genes involved in toll-like receptor and interleukin signaling, chemokine binding, neutrophil degranulation and interactions with lymphoid cells. Patients with COVID-19 also exhibited significantly reduced proportions of neutrophils and macrophages, and increased proportions of goblet, dendritic and B-cells, compared to other viral ARIs. Using machine learning, we built 26-, 10- and 3-gene classifiers that differentiated COVID-19 from other acute respiratory illnesses with AUCs of 0.980, 0.950 and 0.871, respectively. Classifier performance was stable at low viral loads, suggesting utility in settings where direct detection of viral nucleic acid may be unsuccessful. Taken together, our results illuminate unique aspects of the host transcriptional response to SARS-CoV-2 in comparison to other respiratory viruses and demonstrate the feasibility of COVID-19 diagnostics based on patient gene expression.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA